Domain-Range Table
Here, family 1,2 are only used in order to group functions with similar domain and range together for better understanding.
| Family 1 | | | Family 2 | | |
|---|
| Function | Domain | Range | Function | Domain | Range |
| sin−1(x) | [−1,1] | [−2π,2π] | cos−1(x) | [−1,1] | [0,π] |
| csc−1(x) | R−(−1,1) | [−2π,2π]−{0} | sec−1(x) | R−(−1,1) | [0,π]−{2π} |
tan−1(x)
| R | (−2π,2π) | cot−1(x) | R | (0,π) |
| Family 1 | | | Family 2 | | |
|---|
| Function | Domain | Range | Function | Domain | Range |
| sin(x) | R | [−1,1] | cos(x) | R | [−1,1] |
| csc(x) | R−{kπ} | R−(−1,1) | sec(x) | R−{2π+kπ} | R−(−1,1) |
| tan(x) | R−{2π+kπ} | R | cot(x) | R−{kπ} | R |
Inverse Trigonometric function of -x
| Family 1 | Family 2 |
|---|
| sin−1(−x)=−sin−1(x) | cos−1(−x)=π−cos−1(x) |
| csc−1(−x)=−csc−1(x) | sec−1(−x)=π−sec−1(x) |
| tan−1(−x)=−tan−1(x) | cot−1(−x)=π−cot−1(x) |
- sin−1(x1)=csc−1(x)x≥1 OR x≤−1
- cos−1(x1)=sec−1(x)x≥1 OR x≤−1
- sec−1(x1)=cos−1(x)x≥1 OR x≤−1
- cot−1(x1)=tan−1(x)x>0
- tan−1(x1)=cot−1(x)x>0
- tan−1(x1)=−π+cot−1(x)x<0
- sin−1(x)+cos−1(x)=2πx∈[−1,1]
- tan−1(x)+cot−1(x)=2πx∈R
- csc−1(x)+sec−1(x)=2π∣x∣≥1
- tan−1(x)+tan−1(y)
- tan−1(x)+tan−1(y)=tan−1(1−xyx+y)xy<1
- tan−1(x)+tan−1(y)=2πxy=1
- tan−1(x)+tan−1(y)=π+tan−1(1−xyx+y)xy>1
- tan−1(x)−tan−1(y)=tan−1(1+xyx−y)xy>−1
- sin−1(x)+sin−1(y)
- sin−1(x)+sin−1(y)=sin−1(x1−y2+y1−x2)x2+y2≤1
- sin−1(x)+sin−1(y)=π−sin−1(x1−y2+y1−x2)x2+y2≥1
- sin−1(x)−sin−1(y)=sin−1(x1−y2−y1−x2)x≥0, y≥0
- cos−1(x)+cos−1(y)=cos−1(xy−1−x2⋅1−y2)x≥0, y≥0
- cos−1(x)−cos−1(y)
- cos−1(x)−cos−1(y)=cos−1(xy+1−x2⋅1−y2)x≤y
- cos−1(x)−cos−1(y)=−cos−1(xy+1−x2⋅1−y2)x≥y
- 2tan−1(x)=tan−1(1−x22x)for∣x∣<1
- 2tan−1(x)=π+tan−1(1−x22x)forx>1
- 2tan−1(x)=−π+tan−1(1−x22x)forx<−1
- 2tan−1(x)=sin−1(1+x22x)for∣x∣≤1
- 2tan−1(x)=π+sin−1(1+x22x)forx>1
- 2tan−1(x)=−π+sin−1(1+x22x)forx<−1
- 2tan−1(x)=cos−1(1+x21−x2)forx≥0
- 2tan−1(x)=−cos−1(1+x21−x2)forx≤0
- 3tan−1(x)
- 3tan−1(x)=tan−1(1−3x23x−x3)for3−1<x<31
- 3tan−1(x)=π+tan−1(1−3x23x−x3)forx>31
- 3tan−1(x)=−π+tan−1(1−3x23x−x3)forx<3−1