Limits
- limx→0xsin(x)=limx→0x1−cos(x)=limx→0xtan(x)=1
- limx→0xsin−1(x)=limx→0xtan−1(x)=1
- limx→0xex−1=limx→∞xln(1+x)=1
- limx→0(1+x)1/x=limx→∞(1+x1)x=e
- limx→0xax−1=ln(a)
- limx→∞(1+xa)x=ea
- limx→ax−axn−an=nan−1
- limn→∞tn+1tn−1=1
- limx→a(1+f(x))g(x)=elimx→a(f(x)×g(x))
Derivatives
- dxd[f(g(x))]=f′(g(x))⋅g′(x)
- dxd[xn]=nxn−1
- dxd[ex]=ex
- dxd[ef(x)]=f′(x)⋅ef(x)
- dxd[ax]=axln(a)
- dxd[sinx]=cos(x)
- dxd[cosx]=−sin(x)
- dxd[tanx]=sec2(x)
- dxd[cotx]=−csc2(x)
- dxd[secx]=sec(x)tan(x)
- dxd[cscx]=−csc(x)cot(x)
- dxd[ln∣x∣]=x1
- dxd[sin−1x]=1−x21
- dxd[cos−1x]=1−x2−1
- dxd[tan−1x]=x2+11
- dxd[cot−1x]=x2+1−1
- dxd[sec−1x]=∣x∣x2−11
- dxd[csc−1x]=∣x∣x2−1−1